(Very preliminary...)

Lya RT with CoDall simulation

Hyunmi Song¹, Hyunbae Park², Kwang-il Seon³, Kyungjin Ahn⁴, CoDall collaboration

¹Yonsei University, ²IPMU, ³KASI, ⁴Chosun University

SPHINX-RASCAS-TRIPLE Online Workshop, 2, 4-5 Feb. 2021

Lya RT in Reionzation epoch

Lya RT in Reionzation epoch

Jeeson-Daniel+(2012)

Ocvirk+(2020)

Cosmic DawnII Simulation

Table 1. Simulation properties. From left to right: model name; comoving box size, L; total number of particles (DM and gas); mass of DM particles, m_{DM} ; mass of gas particles, m_{gas} ; softening length, η .

Model	$L (h^{-1} \operatorname{Mpc})$	Number of particles	$m_{\rm DM}~({\rm M_{\bigodot}})$	$m_{\rm gas}~({ m M}_{\bigodot})$	$\eta (h^{-1} \text{ kpc})$
L05	5	2×320^{3}	3.93×10^{5}	6.04×10^{4}	0.78
L10	10	2×320^{3}	3.14×10^{6}	4.83×10^{5}	1.56
L20	20	2×320^{3}	2.52×10^{7}	3.87×10^{6}	3.13
L30	30	2×320^{3}	8.49×10^{7}	1.30×10^{7}	4.69

Cosmological hydrodynamic simulation (SPH)

Cosmological

radiation-

hydrodynamic

simulation

(unigrid)

More realistic

realization of

the Universe

Setup					
Number of nodes (GPUs, cores used)	$16384 \ (16384, 65536)$				
Grid size	4096^{3}				
Comoving box size L_{box}	94.44 Mpc (64 h^{-1} Mpc)				
Grid cells per node	128x128x64				
Comoving force resolution dx	$23.06 \ \mathrm{kpc}$				
Physical force resolution at $z=6$	3.3 kpc				
DM particle number N_{DM}	4096^{3}				
DM particle mass M_{DM}	$4.07~\mathrm{x}~10^{5}~\mathrm{M}_{\odot}$				
Average cell gas mass	$0.75~\mathrm{x}~10^{5}~\mathrm{M}_{\odot}$				
Initial redshift z_{start}	150				
End redshift z_{end}	5.8				

Ocvirk+(2020) CoDall

Jeeson-Daniel+

(2012)

Lya RT with CoDall simulation

- Larger cosmological volume
 - Larger halo mass range
 - Larger spatial extent around halos
- Higher resolution for IGM
 - Regular grid better for RT (cf. SPH)
- Redshift evolution
 - z=8, 7, 6

LaRT

- Developed by Kwang-il Seon (KASI)
- Lya Monte-Carlo radiative transfer code
 - Written in modern Fortran
 - MPI
 - Can consider arbitrary 3D distributions of medium on a regular Cartesian grid
- <u>https://seoncafe.github.io/LaRT.html</u>
- Cosmic expansion effect implemented

Cannot care what happens inside the virial radius.

inside the virial radius.

Cannot care what happens inside the virial radius.

Initial position Initial propagation direction Initial frequency First scattering position Number of scatterings Last scattering position Last propagation direction Final frequency Peeling-off output

. . .

Cannot care what happens inside the virial radius.

Hyunbae Park+(in prep.)

Brightest (in UV) halo at z=8

First scattering positions of Lya photons at 200km/s

Brightest (in UV) halo at z=8

First scattering positions of Lya photons at 200km/s

Brightest (in UV) halo at z=8

First scattering positions of Lya photons at 0km/s

simulated

Brightest (in UV) halo at z=8

First scattering positions of Lya photons at -200km/s

simulated

500th brightest (in UV) halo at z=8

First scattering positions of Lya photons at 200km/s

500th brightest (in UV) halo at z=8

Last scattering positions of Lya photons at 200km/s

500th brightest (in UV) halo at z=8

First scattering positions of Lya photons at 0km/s

500th brightest (in UV) halo at z=8

Last scattering positions of Lya photons at 0km/s

500th brightest (in UV) halo at z=8

First scattering positions of Lya photons at -200km/s

500th brightest (in UV) halo at z=8

Last scattering positions of Lya photons at -200km/s

200km/s

-200km/s

0km/s

-200km/s

200km/s

0km/s

-200km/s

0.45% escape wo scattering

 10°

 10^{6}

 10^{5}

104 Uscatt

10²

10¹

10⁰

 10^7

 10^{6}

 10^{5}

104 Uscat∳

10²

101

100

 10^{\prime}

 10^{6}

 10^{5}

104 Uscat⊎

10²

101

100

z=8

z=7

z=6

Toy model

Spherical symmetry Halo mass: 1e12M_{sun} IGM density: step-like IGM Infall motion: (GM(<r)/r)^{0.5} Ionizing bubble size: 3cMpc/h Lya photon initial position: R_{vir} surface

H(z): at z=7

 $R = r_{last} (1 - (r_{last} \cdot k_{last})^2)^{0.5}$

Surface Brightness

200km/s

-200km/s

26% escape wo scattering

1.1%

0.053%

 $R = r_{last} (1 - (r_{last} \cdot k_{last})^2)^{0.5}$

Surface Brightness

(cMpc/h)

-

-2

-3

4.0

2cMpc/h ionizing bubble

Whole box ionized

3cMpc/h ionizing bubble

Input spectrum

Input spectrum

Additional redshift by - rlast • klast

Spectrum

Could be non-negligible...!

Next steps

- To properly implement an input spectrum
- To examine spectrum & SBP simultaneously
- For toy model
 - To explore further by changing halo mass, H(z), IGM density, temperature
- For CoDall halos
 - To generate observables by using peeling-off method for multiple observers