Escape of LyC and LyA from PRALINE & G9 simulations

Preliminary results Kimm et al. (2021, in prep) Song et al. (2021, in prep)

Taysun Kimm (Yonsei)

Jeremy **Blaizot**, Joakim **Rosdahl** (CRAL) Sam **Geen** (Amsterdam), Rebekka **Bieri** (MPA) Do Woon Lee, Hyunmi **Song**, Taehwa **Yoo** (Yonsei) +RASCAS Team + ?

Motivation

Why do we care small-scale propagation of LyC photons?

- 1. Propagation of LyC from GMCs: Reionization (fesc, LyC~10%)
- 2. Cloud disruption: photo-ionization heating -> galactic outflows
- 3. LyA spectrum from GMCs -> galaxy kinematics

This talk will cover 1 and 3

Previous attempts: Dale+, Howard+,Kim+

Understanding the escape of LyC and Ly α photons from turbulent clouds

Taysun Kimm,¹* Jérémy Blaizot,² Thibault Garel,^{2,4} Léo Michel-Dansac,² Harley Katz,³ Joakim Rosdahl[®],² Anne Verhamme⁴ and Martin Haehnelt⁵

¹Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

²Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France

³Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

⁴Observatoire de Genéve, Université de Genéve, 51 Ch. des Maillettes, CH-1290 Versoix, Switzerland

⁵Kavli Institute for Cosmology and Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Kimm et al. (2019)

No self-consistent star formation
 Only spherical clouds
 No magnetic fields

RAMSES-RT

PRALINE simulations

RAMSES-RT

- dx_{min}=0.25 -> 0.02-0.08 pc
- RT/SN fbk -> No IR/thermal SN fbk
- H₂-formation
- LW photons
- No SF -> Sink particle algorithm
- No B > Magnetic fields
- Various morphologies
- Two different surface densities
- Two different turbulent strength
- Metallicity
- Cloud mass
- Resolution

Total 20+ simulations so far

MPA (Germany) Lyocca (France) KISTI (Korea) Cartesius (Netherlands)

hydrogen number density

RMHD simulations of a GMC

temperature

PRALINE simulations

No	Name	$M_{ m cloud}$ $[M_{\odot}]$	$\Sigma_{\rm gas}$ $[M_{\odot}/{ m pc}^2]$	Geometry	Zgas	L _{box} [pc]	Δx_{\min} [pc]	β	SN	$\sigma_{ m v}$ [km s ⁻¹]	t _{final} [Myr]	SFE	Remark
01	SM5_Z002	10 ⁵	90	Spherical	0.002	173	0.04	0.31	_	2.9	8.4	0.26	
02	SM5_Z014	10^{5}	90	Spherical	0.014	173	0.04	0.31	_	2.9	8.4	0.26	
06	SM5_Z002_HR	10^{5}	90	Spherical	0.002	173	0.02	0.31	_	2.9	8.4	0.24	
07	SM5_Z002_LR	10^{5}	90	Spherical	0.002	173	0.08	0.31	_	2.9	8.4	0.19	
04	SM5_Z002_BW	10^{5}	90	Spherical	0.002	173	0.04	2.89	-	2.9	8.4	0.22	
05	SM5_Z002_BS	10^{5}	90	Spherical	0.002	173	0.04	0.03	_	2.9	8.4	0.16	
117	SM6_Z002	10 ⁶	200	Spherical	0.002	317	0.08	0.11	_	11.5	8.3	0.51	
17	SM6_Z002_SN	10^{6}	200	Spherical	0.002	317	0.08	0.11	\checkmark	11.5	8.3	0.51	
23	SM6_Z014_SN	10^{6}	200	Spherical	0.014	317	0.08	0.11	\checkmark	11.5	8.3	0.64	
26	SM6_Z002_SNHR	10^{6}	200	Spherical	0.002	317	0.04	0.11	\checkmark	11.5	8.3	0.55	
10	SM6D_Z002	10 ⁶	650	Spherical	0.002	208	0.05	0.01	_	11.4	4.5	0.87	
08	SM6D_Z014	10^{6}	650	Spherical	0.014	208	0.05	0.01	_	11.4	4.5	0.95	
11	SM6D_Z002_SN	10^{6}	650	Spherical	0.002	208	0.05	0.01	\checkmark	11.4	4.5	0.86	
03	FM5_Z002	10 ⁵	90	Filamentary	0.002	173	0.04	0.31	_	2.7	8.4	0.18	
20	FM6_Z002_SN	10^{6}	200	Filamentary	0.002	317	0.08	0.11	\checkmark	10.3	8.3	0.44	
12	FM6D_Z002_SN	10^{6}	650	Filamentary	0.002	208	0.05	0.01	\checkmark	11.5	4.4	0.68	
128	HM6_Z002_SN	10 ⁶	200	Homo-sph	0.002	320	0.08	0.24	\checkmark	9.1	8.3	0.17	
28	HM6_Z002_SNST	10^{6}	200	Homo-sph	0.002	320	0.08	0.11	\checkmark	16.3	8.3	0.01	

Various morphologies from PRALINE

Spherical (homogeneous)

Filamentary

General evolutionary trend from PRALINE

What determines f_{esc,LyC}?

Connection between LyC and LyA photons

- LyC photons: non-resonant; reionization, absorbed by $N_{HI} > 10^{17} \text{ cm}^{-2}$
- LyA photons: resonant; galaxy kinematics, scattered by $N_{HI} > 10^{14} \text{ cm}^{-2}$

 $\textbf{Vsep:} measure of N_{HI}$

Connection between LyC and LyA photons

- LyC photons: non-resonant; reionization, absorbed by $N_{HI} > 10^{17} \text{ cm}^{-2}$
- LyA photons: resonant; galaxy kinematics, scattered by $N_{HI} > 10^{14} \text{ cm}^{-2}$

Blue-to-red flux: measure of kinematics

PRALINE + RASCAS

RASCAS: RAdiation SCattering in Astrophysical Simulations (Lya radiative transfer) (Michel-Dansac+20)

Clouds are bright in Lya when they are being destroyed efficiently

Lya spectra from simulated GMCs

Lya properties from GMCs

Lya properties are very similar on GMC scales

Relation between V_{sep} and f₉₀₀

f₉₀₀: escape fraction at 900A

Solid, dashed, dotted lines: analytic v_{peak} with T=20,000 K and $\sigma_t = 0, 15, 30 \text{ km/s}$

Lya spectra from isolated galaxies

White: Lya source position

RHD simulation of an isolated galaxy embedded in a 10¹¹ M_{sun} DMH

Lya spectra from isolated galaxies

- Metallicity \uparrow -> dust \uparrow -> Vsep \downarrow
- dust \uparrow -> difficult to destroy GMCs -> f900 \downarrow

Reasonable agreement? Maybe not

Lya spectra from a merging galaxy

Same physics, but with 20 pc resolution

<u>)</u>. How do we produce strong outflows while keeping the CGM neutral?

-8 |----

Summary

- 1. PRALINE show that LyC escape is efficient on GMC scales (~20-60%), most efficient in clouds with ~ 20% SFE
- 2. Simulated GMCs show very similar Lya features in terms of Vsep, B/R
- 3. Galaxy simulations (isolated or merging) did not reproduce the Verhamme results of f₉₀₀-V_{sep}
- 4. Orientation effects help a bit, but not entirely
- 5. Presence of neutral CGM seems like an easy solution to large Vsep, but questions remain how we can actually produce neutral outflows (need to check with runs with extreme feedback)

Effect of numerical resolution

Effect of turbulence

In RASCAS,

Doppler width =
$$\sqrt{2k_BT/m_p} \Rightarrow \sqrt{2k_BT/m_p + v_{turb}^2}$$

Effect of Orientation from merging galaxies

