

• OMAR ATTIA •

GENERATING MAGNETIC FIELDS WITH THE BIERMANN BATTERY

PRIMORDIAL MAGNETOGENESIS

• Origin of cosmic magnetic fields?

THEORETICAL BACKGROUND

• Induction equation:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) = \nabla \times \mathbf{E}_{\mathbf{EMF}}$$

• Fails to generate an *ab initio* magnetic field.

THEORETICAL BACKGROUND

• Using the conservation of electrons momentum:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E}_{\mathbf{EMF}} + \nabla \times \left(c \frac{\nabla p_{\mathbf{e}}}{e n_{\mathbf{e}}} \right)$$
$$\mathbf{E}_{\mathbf{B}}$$

PROPERTIES OF THE BATTERY

$$\mathbf{E}_{\mathbf{B}} \equiv c \, \frac{\nabla p_{\mathbf{e}}}{e n_{\mathbf{e}}}$$

• Creates a magnetic field from **zero initial conditions**.

• Condition: **misaligned** ∇n_e and ∇p_e .

THE MHD INTEGRATOR

- Solves the induction equation: $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{E}_{\text{EMF}} + \mathbf{E}_{\text{B}}) = \nabla \times \mathbf{E}_{\text{tot}}$
- Satisfying the **solenoidal constraint** $\nabla \cdot \mathbf{B} = 0$ \rightarrow Constrained transport: $\frac{\partial}{\partial t} \iint \mathbf{B} \cdot d\mathbf{S} = \oint \mathbf{E}_{tot} \cdot d\mathbf{I}$

THE MHD INTEGRATOR

Illustration of where the quantities are defined with respect to the cell in the RAMSES code.

INTRODUCTION The Biermann Battery

THE RAMSES CODE

APPLICATIONS

CONCLUSION

IMPLEMENTATION OF THE BIERMANN BATTERY

- E_B needs to be defined at the **cell edges**.
- 2 implementation methods:
 - \rightarrow Naive method average of the adjacent cell-centred values.
 - \rightarrow *Stable* method average of the 2 adjacent vertices.

$$\mathbf{E}_{\mathbf{B}} = \frac{c\kappa_{\mathrm{B}}}{e} \left(T_{\mathrm{e}} \nabla \ln n_{\mathrm{e}} + \nabla T_{\mathrm{e}} \right)$$

with $p_{\rm e}\equiv n_{\rm e}k_{\rm B}T_{\rm e}$

• The stable method avoids the **"Biermann catastrophe"** (Graziani+ 2016).

IMPLEMENTATION OF THE BIERMANN BATTERY

$$\mathbf{E}_{\mathbf{B}} \equiv c \, \frac{\nabla p_{\mathbf{e}}}{e n_{\mathbf{e}}}$$

$$\mathbf{E}_{\mathbf{B}} = \frac{ck_{\mathrm{B}}}{e} \left(T_{\mathrm{e}} \nabla \ln n_{\mathrm{e}} + \nabla T_{\mathrm{e}} \right)$$

correct

SMOOTH TEST

 Function test, where the analytic result is known in advance. Misaligned profiles:

 $n_{\rm e} = n_0 + n_1 \cos(k_x x)$; $p_{\rm e} = p_0 + p_1 \cos(k_y y)$

Magnetic field generated by the smooth test, where the conditions for the Biermann battery are met.

INTRODUCTION THE RIFRMANN BATTERY THE RAMSES CODE APPLICATIONS CONCLUSION

MODIFIED SMOOTH TEST

• Same test, but **aligned** density and pressure profiles. $n_{\rm e} = n_0 \left(\sin(k_x x)^2 + \sin(k_y y)^2 \right); p_{\rm e} = p_0 \left(\sin(k_x x)^2 + \sin(k_y y)^2 \right)$

Magnetic field generated by the modified smooth test, where the conditions for the Biermann battery are not met.

STRÖMGREN SPHERE

- Punctual source of ionizing photons propagating radially (e.g. forming star) → Strömgren sphere.
- Homogeneous ISM: $n_{\rm e}=n_0$, $p_{\rm e}=p_0$.

2D Strömgren sphere visible in the $n_{\rm e}$ and $p_{\rm e}$ maps.

• No Biermann battery is expected.

INTRODUCTION THE BIERMANN BATTERY THE RAMSES CODE APPLICATIONS CONCLUSION

MODULATED STRÖMGREN SPHERE

• Same punctual source but with a **fluctuating density** profile in the ISM:

$$n_{\rm e} = n_0 + n_1 \cos(k_x x)$$
; $T_{\rm e} = T_0$

Simulation name	<i>n</i> ₁	Method
str-0%-n	$0.0 imes n_0$	Naive
str-10%-n	$0.1 imes n_0$	Naive
str-20%-n	$0.2 \times n_0$	Naive
str-0%-c	$0.0 imes n_0$	Correct
str-10%-c	$0.1 imes n_0$	Correct
str-20%-c	$0.2 imes n_0$	Correct

MODULATED STRÖMGREN SPHERE

• The maximum of the field is located at the **ionization front**.

MODULATED STRÖMGREN SPHERE

• The maximum of the field is located at the **ionization front**.

INTRODUCTION THE BIERMANN BATTERY THE RAMSES CODE **APPLICATIONS** CONCLUSION

GENERATION OF MAGNETIC FIELDS WITH THE BIERMANN BATTERY

MODULATED STRÖMGREN SPHERE

SEDOV BLAST WAVE

Modulated Strömgren Sphere

INTRODUCTION

THE BIERMANN BATTERY

THE RAMSES CODE

APPLICATIONS

CONCLUSION

 \rightarrow A bit less convincing than the Strömgren test,

but the correct method still behaves better at the shock location.

COSMOLOGICAL SIMULATIONS

• Box of size 2.5 cMpc at z = 6: **EoR**.

INTRODUCTION THE BIERMANN BATTERY THE RAMSES CODE APPLICATIONS CONCLUSION

GENERATION OF MAGNETIC FIELDS WITH THE BIERMANN BATTERY

COSMOLOGICAL SIMULATIONS

• Three battery channels: linear perturbations, i-fronts, shocks.

COSMOLOGICAL SIMULATIONS

• MW **2D histograms** of B vs ρ .

COSMOLOGICAL SIMULATIONS

• MW **2D histograms** of B vs ρ .

COSMOLOGICAL SIMULATIONS

• MW 2D histograms of B vs ρ : 2 branches, $B \sim \rho^{2/3}$

COSMOLOGICAL SIMULATIONS

Switching off
SN feedback
turns off the
shock-driven
channel.

INTRODUCTION

THE BIERMANN BATTERY

THE RAMSES CODE

APPLICATIONS

CONCLUSION

COSMOLOGICAL SIMULATIONS

• Box of size 5 cMpc at z = 6: same results.

COSMOLOGICAL SIMULATIONS

• Box of size 5 cMpc at z = 6: same results.

INTRODUCTION THE BIERMANN BATTERY THE RAMSES CODE APPLICATIONS CONCLUSION

COSMOLOGICAL SIMULATIONS

• Temporal comparison: VW **magnetic field** and **temperature**.

CONCLUSION

- Successfully **implemented** the **Biermann battery** in the **RAMSES** code. Requires caution (naive vs correct method).
- 3 channels of seed magnetic field:
 - linear perturbations $\rightarrow 10^{-25} \text{ G}$
 - i-fronts $\rightarrow 10^{-20} \text{ G}$
 - SN-driven galactic winds $\rightarrow 10^{-18}~{\rm G}$
- What remains to be done: power-spectrum analysis, coupling to a sub-grid dynamo model...