What drives the ram pressure stripping?

hints from TIGRESS simulation

Finally.. Submitted in ApJ.. yesterday!

Woorak Choi

(Yonsei University, woorak.c@yonsei.ac.kr)

With Chang-Goo Kim (Princeton Univ.) & Aeree Chung (Yonsei Univ.)

2022.02.22

How the ISM of different temperatures and densities gets affected by ICM ram pressure

Understanding the underlying physics of momentum transfer in the ICM ram pressure stripping

• Gunn & Gott (1972) :

• Gunn & Gott (1972) :

$$ho_{ICM} v_{rel}^2$$
 (Ram pressure, P_{ram})
vs.
 $\Sigma_{ISM} rac{d\Phi}{dz}$ (Restoring force, $P_{restore}$)

HI of RPS galaxies in Virgo

Chung et al. 09

• Gunn & Gott (1972) :

$$\rho_{ICM} v_{rel}^2 (P_{ram})$$
 vs. $\Sigma_{ISM} \frac{d\Phi}{dz} (P_{restore})$

HI of RPS galaxies in Virgo

Chung et al. 09

HI, CO, Ha, FUV of RPS galaxies

Lee & Chung 2017

• Gunn & Gott (1972) : $\rho_{ICM} v_{rel}^2$ (Ram pressure) vs. $\Sigma_{ISM} \frac{d\Phi}{dz}$ (Restoring force)

How the ISM of different temperatures and densities gets affected by ICM ram pressure

Understanding the underlying physics of momentum transfer in the ICM ram pressure stripping

Various RPS simulations in galactic scale

Tonnesen & Stone (2014) : 159 pc resolution

Lee et al. (2020) : 18 pc resolution

2022.02.22

-3

Three-phase ISM in Galaxies Resolving Evolution with Star formation and Supernova feedback

Kim & Ostriker (2017), ApJ, 846, 133

TIGRESS Physics

- a) MHD simulation : Based on the Athena (Stone et al. 2008)
- b) FUV radiation and **SN rates by population synthesis**
- c) Hot ISM ($T > 10^6 K$) created by SN shocks (resolved Sedov-Taylor phase)
- d) SN in clusters + OB runaways (realistic space-time correlation of SNe for multi-phase ISM)
- e) External gravity by old stars & dark matter (Kuijken & Gilmore 1989)
- f) Star formation using self-gravity and sink particles (= star clusters) (Gong & Ostriker 2013)
- g) Optically thin cooling $(10K < T < 10^9 K)$ (Koyama & Inutsuka 2002; Sutherland & Dopita 1993)
- h) Photoelectric heating in the warm/cold ISM ($T < 2 \times 10^4 K$)

- 4 pc (and 8 pc) uniform resolution & ~ 250 Myr duration
- ICM conditions refer to NGC 4522's environment

Model	$n_{ m ICM}$	$v_{ m ICM}$	$P_{ m ICM}/k_{ m B}$	$P_{\rm ICM}/{\cal W}_{\rm GG}$	Δx
	$(10^{-4}~{\rm cm}^{-3})$	$(10^3 {\rm kms^{-1}})$	$(10^4 \ {\rm cm}^{-3} {\rm K})$		(pc)
(1)	(2)	(3)	(4)	(5)	(6)
ICM-P1	0.5	1	0.94	0.18	8
ICM-P3(h)	1	1.4	3.6	0.69	8(4)
ICM-P7(h)	2	1.4	7.2	1.4	8(4)
ICM-P14	2	2	14	2.7	8

 Table 1. ICM Model Parameters

- 4 pc (and 8 pc) uniform resolution & ~ 250 Myr duration
- ICM conditions refer to NGC 4522's environment •

10⁰

 10^{-1}

10⁻² –

3

Overall Evolution

Model	$n_{ m ICM}$	$v_{ m ICM}$	$P_{\rm ICM}/k_{\rm B}$	$P_{\rm ICM}/{\cal W}_{\rm GG}$	Δx
	$(10^{-4} { m cm}^{-3})$	$(10^3 \ {\rm kms^{-1}})$	$(10^4 \ {\rm cm}^{-3} {\rm K})$		(pc)
(1)	(2)	(3)	(4)	(5)	(6)
ICM-P1	0.5	1	0.94	0.18	8
ICM-P3(h)	1	1.4	3.6	0.69	8(4)
ICM-P7(h)	2	1.4	7.2	1.4	8(4)
ICM-P14	2	2	14	2.7	8

Table 1. ICM Model Parameters

Weak ICM wind (P3h, 4pc)

Strong ICM wind (P7h, 4pc)

Column Density; Density; Temperature

Deformed but

maintained ISM disk

2022.02.22

Weak ICM wind (P3h, 4pc)

Strong ICM wind (P7h, 4pc)

Column Density; Density; Temperature

woorak.c@yonsei.ac.kr

2022.02.22

Simulation Snapshots

Red: net gain; Blue: net loss

Momentum evolution

Red: net gain; Blue: net loss

Momentum evolution

Red: net gain; Blue: net loss

Momentum evolution

1. Cool to hot transition: due to the cool ISM shredding at ICM-ISM interface

Mass evolution

Red: net gain; Blue: net loss

Momentum evolution

- 1. Cool to hot transition: due to the cool ISM shredding at ICM-ISM interface
- 2. Hot to cool transition: hot gas cooling and mixing between hot and cool gas

Cool gas: < 2e4 K; Int. gas: 2e4~5e5 K Hot gas: > 5e5 K Red: net gain; Blue: net loss

- 1. Cool to hot transition: due to the cool ISM shredding at ICM-ISM interface
- 2. Hot to cool transition: hot gas cooling and mixing between hot and cool gas
- 3. Momentum

Cool gas: < 2e4 K; Int. gas: 2e4~5e5 K Hot gas: > 5e5 K Red: net gain; Blue: net loss

- 1. Cool to hot transition: due to the cool ISM shredding at ICM-ISM interface
- 2. Hot to cool transition: hot gas cooling and mixing between hot and cool gas
- 3. Momentum: Always transfer from hot to cool

-> Momentum is transferred via mixing in wide spatial ranges -> RPS

Only cool gas : < 2e4 K (~HI gas)

t = 260 ~ 280 Myr

 Correlation between the ICM fraction and the vertical velocity of cool gas (Schneider et al. 2020; Tonnesen & Bryan 2021)

If mixing dominates momentum transfer,

 $v_{\rm z}^{\rm cool} = v_{\rm in} f_{\rm ICM}^{\rm cool}$

: More ICM -> Higher velocity & Lower metallicity

Only cool gas : < 2e4 K (~HI gas)

t = 260 ~ 280 Myr

 Correlation between the ICM fraction and the vertical velocity of cool gas (Schneider et al. 2020; Tonnesen & Bryan 2021)

If mixing dominates momentum transfer,

 $v_{\rm z}^{\rm cool} = v_{\rm in} f_{\rm ICM}^{\rm cool}$

: More ICM -> Higher velocity & Lower metallicity

- Our results support the mixing-driven momentum transfer
- ICM fraction in the cool gas is non-negligible

Mixing driven momentum transfer plays an important role in the ram pressure stripping

Other hints for mixing-driven momentum transfer

Only cool gas : < 2e4 K (~HI gas)

- Our results support the mixing-driven momer
- ICM fraction in the cool gas is non-negligible

Tonnesen & Bryan 2021

Mixing driven momentum transfer plays an important role in the ram pressure stripping

- Enhanced 2-4 times instantaneously and 30-50 % on average
- Weak model: Enhanced star formation is maintained
- Strong model : Star formation is quenched in 100 Myr
- This is qualitatively consistent result with previous simulations (e.g., Kronberger et al. 2008; Steinhauser et al. 2012, 2016; Sparre et al. 2020; Lee et al. 2020) and observations (SFR enhancement of 0.2-0.3 dex; Vulcani et al. 2018; Roberts & Parker 2020)

Extraplanar star formation

- Extraplanar star formation are found up to 3 kpc height
- Metallicity of these star clusters is 0.03 – 0.16 dex lower compared to the midplane star clusters

-> Mixed ISM forms the stars at the extraplanar space (within 3 kpc)

-> Farther extraplanar ISM contains more ICM

Take home message

- We use the local model TIGRESS simulation (4 pc resolution) to study the ram pressure stripping
- Q) How the ISM of different temperatures and densities gets affected by ICM ram pressure

A) <u>Cool-to-hot transition at the interface and hot-to-cool transition at</u> <u>the rear-side are found</u>

Q) Understanding the underlying physics of momentum transfer in the ICM ram pressure stripping

A) Mixing driven momentum transfer plays a dominant role in the RPS

- SFR enhancement : 30 50% on average (all models)
- Star formation quenching timescale : ~ 100 Myr (strong models)
- Extraplanar star formations are found up to 3 kpc height
- Extraplanar stars have relatively low metallicities