ENV 2022

Simulating Jellyfish Galaxies -A Case Study for a Gas-Rich Dwarf Galaxy-

Accepted in ApJ p://arxiv.org/abs/2201.01316

with Taysun Kimm (Yonsei) Jérémy Blaizot (Lyon) Haley Katz (Oxford) Wonki Lee (Yonsei) Yun-Kyeong Sheen (KASI) Julien Devriendt (Oxford) and Adrianne Slyz (Oxford)

Jaehyun Lee (KIAS)

- Ram pressure stripping
 - Hydrodynamical process that can directly blow the ISM away from galaxies $P_{
 m ram} \sim
 ho_{
 m ICM} v^2$ (Gunn&Gott 72)
 - Stronger in denser environments => mainly effective in galaxy clusters
 - Characteristic tails are observed in multiple bands
 - Young stars are detected in the wakes of some ram pressure stripped (RPS) galaxies => evidencing the presence of molecular clumps?

- Multiphase nature of RPS galaxies
 - Extra-planar features are detected both in HI and CO
 - RPS tails are also multiphase (HI, CO, Hα, and X-ray)
 - A few RPS galaxies have $M_{H_2} \sim 10^9 M_{\odot}$ in their tails

Lee & Chung 18

- Impact of ram pressure on multi-phase disks
 - Lee+20 attempted to examine the origin of jellyfish features using Radiation-Hydrodynamic (RHD) simulations
 - No molecular clumps form in the RPS tails of typical dwarf galaxies
- RPS galaxies with abundant molecular tails
 - ESO137-001 (Jachym+19), D100 (Jachym+17), JO201, JO204, JO206, JW100 (Moretti+18) : $M_{H_2} \sim 10^9 M_{\odot}$ estimated in their tails
 - Stellar mass varies $(2 \times 10^9 3 \times 10^{10} M_{\odot})$, but they are commonly gas-rich in their disks

RPS galaxy in an RHD simulation Lee+20

D100 in the Coma cluster Jachym+17

- Key motivation
 - Molecular-rich tails are found behind gas-rich disks
 - stripping?

- Methodology
 - environment

Does the plenty ISM play a critical role in the development of multiphase tails after

RHD simulations for a gas-rich galaxy experiencing strong ram pressure in an idealized

- RAMSES-RT
 - Developed by Teyssier 02; Rosdahl+13; Rosdahl & Teyssier 15
 - Based on an adaptive-mesh refinement code, RAMSES
 - Tracing 8 photon groups, from extreme ultraviolet (UV) to infra-red (IR)
 - Computing non-equilibrium chemistry and cooling of HI, HII, HeI, HeII, HeIII and e⁻
 - Updated by Katz+17; Kimm+17, 18
 - H₂ formation and dissociation is included based on a modified photochemistry model
 - Star formation efficiency (SFE) computed based on a thermo-turbulent model
 - SFE can vary, depending on the turbulent condition of the ISM
 - Mechanical and radiative SN feedback

- RAMSES-RT
 - Tracing gas phase transition based on 8 photon groups
 - Chemical species traced : H₂, HI, HII, HeI, HeII, HeIII, and e⁻
 - Formation of H₂ via dust and H⁻ channels
 - Destruction of H₂ via photo-dissociation and collisional ionisation

Photon group	ϵ_0 (eV)	$ \begin{array}{c} \epsilon_1 \\ (eV) \end{array} $	$(\operatorname{cm}^2 \operatorname{g}^{-1})$	Main function
Optical	1.0	5.6	10 ³	Direct RP
FUV	5.6	11.2	10 ³	Photoelectric heating
LW	11.2	13.6	10 ³	H ₂ dissociation
$EUV_{HI,1}$	13.6	15.2	10 ³	H _I ionization
EUV _{HI,2}	15.2	24.59	10 ³	H I and H_2 ionization
EUV _{HeI}	24.59	54.42	10 ³	He I ionization
EUV _{He II}	54.42	∞	10 ³	He II ionization

Kimm+17

- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - Initial condition (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - M_{*}~2.1x10⁹M_☉ (R_{1/2}~2.4kpc)
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - High gas fraction (5x of normal) : $M_{HI}/M_{\star} \sim 2.6 (5.4 \times 10^9 M_{\odot})$
 - Cell resolution down to 18pc

- Simulations
 - Isolated environment no wind (control sample)
 - Gas-rich (NoWind_rich)
 - Strong face-on winds to mimic ram pressure at the cluster center (v_{wind}=1,000km s⁻¹, T_{ICM} ~10⁷K, $n_{\rm H}=3\times10^{-3}cm^{-3}$
 - Normal (FaceWind10, Lee+20)
 - Gas-rich (FaceWind10_rich)
 - Metal enrichment from SNe is turned off
 - To enable us to trace the medium origin \bullet
 - ISM : $0.75 Z_{\odot}$, ICM: $0.3 Z_{\odot}$

No Wind

• FaceWind10 - a normal galaxy encountering a strong wind

FaceWind10_rich - gas-rich galaxy encountering a strong wind

- Birthplace of stars in the gas-rich galaxy as a function of time \bullet
 - No stars form in z>3kpc after t~100Myr in the NoWind_rich galaxy

Stars form in the tail of the FaceWind10_rich galaxy after encountering the wind (t>130Myr)

- Star formation rate (SFR) evolution
 - Disk star formation (SF) is quenched over time after encountering the ICM winds
 - SFRs decay similarly in the normal and gas-rich galaxies
 - SF is boosted at the center (r<<1kpc) due to gas compression by the ICM winds
 - Evident tail SF is observed in FaceWind10_rich
 - Tail SFR~10⁻³-10⁻² M_{\odot} /yr comparable with observations (e.g. D100 in Coma)

- Are the tail clouds more turbulent than disk clouds?
 - Disk clouds are more turbulent mainly due to strong stellar feedback \bullet
 - Less gas reservoirs mainly account for the low SFR in the tail

- Star formation on the disk
 - Strong ram pressure truncates the disk, suppressing SF in R>1-2kpc
 - SF is rather boosted at the center (r<1kpc) due to gas compression by the wind

- Star formation in the tail
 - Most (~90%) tail SF occurs in the near wake (z<10kpc) of the FaceWind10_rich galaxy
 - Their origin is mostly stripped ISM
 - Distant stars form in clouds that are mixed well with the ICM
 - Indicating the formation of molecular clumps in the RPS tail

- Origin of tail molecular clumps
 - Molecular hydrogen clumps (n_H>100cm⁻³) form far behind (z~60-80kpc) the galactic disk of the FaceWind10_rich galaxy

 No dense FaceWind

Gas-rich galaxy (FaceWind10_rich) has warm ionized gas of t_{cool} <1 Myr 20 times more than FaceWind10

- Hα emissivity Is SF the main origin of Hα emission in ram pressure stripped tails?
 - Hα emission is computed for recombinative and collisional processes
 - Local maxima of Ha strongly correlate with young stars in the tail

Stars

(t_{age}>20Myr)

0

185 Myr (Tail SFR peaks)

3.66 Myr

10 kpc

 \bigcirc

ලි

- Intrinsic SFR vs SFR derived from Ha \bullet
 - Total Ha luminosity is dominated by Ha photons emitted from diffuse clouds
 - A limiting flux of 6×10^{38} erg/s/kpc² largely reduces Ha luminosity in the tail

- Hα Xray flux correlation in RPS tails
 - A strong correlation is reported by Sun+21
 - $F_X/F_{H\alpha}$ ~3.5 in RPS tails, on average
 - Measured on a scale of 10×10kpc²
 - The source of the Hα and Xray photons are fundamentally different: T_{gas}~10⁴K vs T_{gas}~10⁷K
 - Strongly evidencing mixing between the ICM and stripped ISM in RPS tails?

ratio

Ш С

 \square

С С

ray

 \times

- Hα and X-ray emissivity of the FaceWind10_rich galaxy
 - Hα: computed for recombinative and collisional excitation processes
 - X-ray: computed using Astrophysical Plasma Emission Code (Smith+01)

10.0

- Hα Xray SB correlation in the RPS tail of the FaceWind10_rich galaxy
 - F_x measured in 0.4-7.5keV and converted into bolometric flux, following observations (Sun+21)
 - $F_X/F_{H\alpha}$ ~1800 in the ICM

~1.5-20 in the tail (c.f. $F_X/F_{H\alpha}$ ~3.5 in Sun+21)

< 1.5 in the disk

- F_{ISM} tightly correlates with $F_X/F_{H\alpha}$
 - $F_X/F_{H\alpha}$ increase with decreasing f_{ISM}

- Caveat (which will be investigated soon)
 - Missing or incomplete physics
 - Magnetic field
 - Thermal conduction
 - Live halo environments can make different tail features

- Summary
 - Strong ram pressure effectively suppresses star formation in the gas-rich galaxy
 - Evident tail SF presents in molecular clumps
 - Molecular clumps form in-situ in the RPS tail of the gas-rich galaxy
 - Mixing between the ICM and stripped ISM facilitates gas cooling in the tail
 - Bright Hα cores are lit by young stars
 - Most diffuse Hα photons are produced from processes other than star formation
 - Observed X-ray to Ha flux ratio is reproduced with moderate deviations
 - The flux ratio strongly correlates with the ISM fraction, which indicates the key role of mixing in the formation of RPS tails

