on

Phase-space Analysis Cluster (Group) Galaxies

Jinsu Rhee, Sukyoung Yi **Yonsei University**

9 Feb. 2021

Color-Mass Diagrams (Bi-modality) (Kauffmann et al. 2004)

Color-Mass Diagrams (Bi-modality) (Kauffmann et al. 2004)

sSFR Distribution (Haines et al. 2013)

sSFR(Cluster) / sSFR(field) for galaxies with the same mass and redshift range

Main Sequence Relation

Instantaneous quenching (Peng et al. 2010)

Goal of This Study

1) Derive the Star Formation History for cluster galaxies

2) Predict the Main Quenching Processes, corresponding to the derived SFH

YZiCS-RAMSES (AMR, Teyssier 2002)

Cosmological

15 clusters in 200 Mpc/h

 $(5e13 < M_{cluster}/M_{\odot} < 1e15)$

- DM+hydro
- dx=0.76 kpc/h ulletdm=8e7 M⊙ dm∗=5e6 M⊙

Sample

SDSS

- Cluster / Group Catalog (Tempel + 14) •
- ~500 hosts (with > 5e13 Msun) • ~20,000 galaxies (with > 5e9 Msun)
- Galaxies are limited to S0 + Spiral •
- SFR from SED ullet(Salim+16; NUV + Opt + FIR)

Phase-space Analysis

Time since Infall in Phase-space

Phase-space Distribution of a massive cluster (Rhee et al. 2017)

Environmental Workshop 2021

A good separation in phase-space

- > Orbital parameters would not be so different
 - (e.g., Wetzel 2010)
- > Similar crossing times for infalling galaxies
 - (e.g., Jung+18)
- First Infallers: T_{inf} < 0
- •**Recent Infallers**: 0 < T_{inf} < 3 Gyr
- Intermediate Infallers: 3 < T_{inf} < 6 Gyr
- •Ancient Infallers: T_{inf} > 6 Gyr

Time since Infall in Phase-space

Phase-space Distribution of a massive cluster

Environmental Workshop 2021

A good separation in phase-space

- > Orbital parameters would not be so different (e.g., Wetzel 2010)
- > Similar crossing times for infalling galaxies
 - (e.g., Jung+18)
- First Infallers: T_{inf} < 0
- Recent Infallers: 0 < T_{inf} < 3 Gyr
- Intermediate Infallers: 3 < T_{inf} < 6 Gyr
- •Ancient Infallers: T_{inf} > 6 Gyr

Time since Infall in Phase-space

Phase-space Distribution of a massive cluster

Time Since Infall (From Sim-)

SFR (From Obs-)

Environmental Workshop 2021

SFR vs. TSI Relation from Abundance Matching

Main Hypothesis: SFR is negatively correlated with TSI

Environmental Workshop 2021

SFR vs. TSI Relation from Abundance Matching

SFR vs. TSI Relation from Abundance Matching

Environmental Workshop 2021

SFH Model

Quenching Timescale outside Cluster

Quenching Timescale outside Cluster

- •2.5 3.5 Gyr, with the mass trend: $\sim (M_*)^{-1}$
 - (e.g., Noeske et al. 2007)
 - > Low SF efficiency for massive galaxies
 - > analogous to mass quenching (Peng+10)
- Lower than the e-folding timescale in the global SFH (~ 4 Gyr; Madau & Dickinson 2014) > Presence of environmental effects for infalling galaxies prior to infall (e.g., Pre-processing)

Delay Time

Delay Time

- ~ 2 Gyr, consistent with the crossing time (e.g., Tal+14; Fossati+17, ...)
 - > The pace of quenching is maintained during the first crossing time into the cluster.
 - > Independently confirm the delay-then-rapid quenching pattern (Wetzel + 13)
- Quenching remains gentle for the first time > Gas loss will happen primarily on hot and neutral gas, less affecting SFR.

Quenching Timescale inside Cluster

Quenching Timescale inside Cluster

 1 - 2 Gyr, with the stellar mass trend > Short quenching timescales; galaxies are quickly quenched (ram pressure stripping as the main candidate?) Maybe different cold gas fraction at the infall epoch > Low gas fraction for massive galaxies due to mass quenching ,so that they are quenched faster (e.g., Jung+18)

> While less massive galaxies can form stars much longer period of time, yielding longer quenching timescales

- Quenching Timescales are measured by combining Sim- and Obsthrough the Phase-Space Diagram
 - > 3 Gyr (outside cluster): Mass quenching outside clusters is important
 - > 2 Gyr (delay time): Gentle quenching during the first pericenter passage
 - > 1 Gyr (inside cluster): Violent quenching after the first pericenter passage
- Delay-then-rapid quenching pattern for cluster galaxies
- (Future) Extend the sample to group-sized halos

Conclusion

The Legacy Project

- Zoom-in DM-only Sims From the original volume of (1600 Mpc/h)³
- It is designed to sample > 7 sub regions regarding their mean density (void, -2sigma, -1, 0, 1, 2, cluster)

(Still running...)

- Initical condition : MUSIC at z = 99?
- **DMonly (gadget)**
- Halofinder : Rockstar + FoF

Nam mea m1m2s p1s p29 . clust

Future Work I - PSA for Group

ne	L _{box}	L _{box} hr	N ^{hr}	N _{eff.}	m _p	Comment
	(Mpc/h)	(Mpc/h)			(M _o)	
เท	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo
S	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo
5	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo
5	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo
5	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo
er	1600.0	83.0	1700 ³	32768 ³	1.32E+7	zoom-in bo

Environmental Workshop 2021

Future Work I - PSA for Group

jinsu.rhee@yonsei.ac.kr

Environmental Workshop 2021

Future Work I - PSA for Group

Future Work II - Case Study

NewHorizon

- Dubois et al. 2020 (in pres) •
- RAMSES (AMR, Teyssier 2002)
- Cosmological Zoom in • 10 Mpc Sphere (from HorizonAGN)
- DM+hydro •
- 6D Galaxy Finder (VELOCIRaptor) •
- dx=40 pc/h dm=1e6 M⊙ dm∗=1e4 M⊙

